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Geometric Quantization of Relativistic
Hamiltonian Mechanics
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A relativistic Hamiltonian mechanical system is seen as a conservative Dirac constraint

system on the cotangent bundle of a pseudo-Riemannian manifold. We provide geo-

metric quantization of this cotangent bundle where the quantum constraint serves as a
relativistic quantum equation.
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Both relativistic and nonrelativistic mechanical systems on a configuration
spaceQ can be seen as conservative Dirac constraint systems on the cotangent bun-
dle T*Q of Q, but occupy its different subbundles. Therefore, one can follow the
precedent of geometric quantization of nonrelativistic time-dependent mechanics
in order to quantize relativistic mechanics.

Recall that, given a symplectic manifol@ (2) and a HamiltoniarH on
Z, a Dirac constraint system on a closed imbedded submanifoldN — Z of
Z is defined as a Hamiltonian system binprovided with the pullback presym-
plectic formQy = i, 2 and the pullback Hamiltoniarf,H (Gotayet al., 1978;
Mangiarotti and Sardanashvily, 1998; WaZ-Lecanda, 1989). Its solution is a
vector fieldy on N, which fulfils the equation

y1Qn +i%dH = 0.

Let N be coisotropic. Then a solution exists if the Poisson bradRetf } vanishes
on N wheneverf is a function vanishing o. It is the Hamiltonian vector field
of H on Z restricted toN.

A configuration space of nonrelativistic time-dependent mechanics (hence-
forth NRM) of m degrees of freedom is am(+ 1)-dimensional smooth fibre
bundle Q — R over the time axisR (Mangiarotti and Sardanashvily, 1998;
Sardanashvily, 1998). Itis coordinated oy = (q°, q'), whereq® is the standard
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Cartesian coordinate di. Let T*Q be the cotangent bundle &f equipped with
the induced coordinates|’(, p, = ;) with respect to the holonomic coframes
{dg*}. Provided with the canonical symplectic form

Q =dp, Adq, 1)

the cotangent bundl&*Q plays the role of a homogeneous momentum phase
space of NRM. Its momentum phase space is the vertical cotangent bth@le

of Q — R coordinated byd*, '). A Hamiltonian of NRM is defined as a
sectionpg = —H of the fibre bundleT*Q — V*Q. Then the momentum phase
space of NRM can be identified with the imadeof H in T*Q, which is the
one-codimensional (consequently, coisotropic) imbedded submanifold given by
the constraint

Hr = po+ H(g", px) = 0.

Furthermore, a solution of a nonrelativistic Hamiltonian system with a Hamiltonian
‘H is the restrictiony to N = V*Q of the Hamiltonian vector field of{+ on

T*Q. It obeys the equatiow |2y = 0 (Mangiarotti and Sardanashvily, 1998;
Sardanashivily, 1998). Moreover, one can show that geometric quantization of
V*Q is equivalent to geometric quantization of the cotangent buhti@, where

the quantum constrairi{ty = 0 on sectiong/ of the quantum bundle serves as
the Schodinger equation (Giacheté al,, 2002a,b). This quantization is a variant

of quantization of presymplectic manifolds via coisotropic imbeddings (Gotay and
Sniatycki, 1981).

A configuration space of relativistic mechanics (henceforth RM) is an oriented
pseudo-Riemannian manifol®( g), coordinated byd*). Its momentum phase
space is the cotangent bundl&Q provided with the symplectic forife (1). Note
that one also considers another symplectic f&rmt F, whereF is the strength of
an electromagnetic fiel&piatycki, 1980). A relativistic Hamiltonian is defined as
a smooth real function H olm*Q (Mangiarotti and Sardanashvily, 1998; Rovelli,
1991; Sardanashvily, 1998). Then a relativistic Hamiltonian system is described
as a Dirac constraint system on the subspgdad T*Q given by the equation

Hr =g,,0“H3"H —1=0. (2)
Similarly to geometric quantization of NRM, we provide geometric quantization

of the cotangent bundl&*Q and characterize a quantum relativistic Hamiltonian
system by the quantum constraint

Hry = 0. (3)

We choose the vertical polarization @it Q spanned by the tangent vecteérs
The corresponding quantum algebdac C*°(T*Q) consists of affine functions
of momenta

f =a'(9")p. +b(@") (4)
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onT*Q. They are represented by the Smiliniger operators

f = —iaka)L — I—

2
in the spac&>°(Q) of smooth complex functions o@.
Note that the functiorHt (2) need not belong to the quantum algebta
Nevertheless, one can show thatHif is a polynomial of momenta of degré&eit
can be represented as a finite composition

HTZZfli---fki (6)

[
yat — Zaxax In(—g) +b, g = det@p), ®)

of products of affine functions (4), i.e., as an element of the enveloping alg?ebra
of the Lie algebrad (Giachetteet al,, 2002a). Then it is quantized

HTP—) /H\T:Zf’\li"'f’\ki (7)
i

as an element ofl. However, the representation (6) and, consequently, the quan-
tization (7) fail to be unique.

Let us provide the above mentioned formulation of classical RM as a
constraint autonomous mechanics on a pseudo-Riemannian man@olg) (
(Giachettaet al, 1999; Mangiarotti and Sardanashvily, 1998, 2000). Note that
it need not be a space-time manifold.

The space of relativistic velocities of RM dd is the tangent bundI€Q of
Q equipped with the induced coordinateg (4*) with respect to the holonomic
frames{0, }. Relativistic motion is located in the subbunifig of hyperboloids

9u(@9"9” —1=0 8
of TQ. It is described by a second-order dynamic equation
4" = g"(a", a") 9)

on Q, which preserves the subbundle (8), i.e.,
(&9 + E*0)(00G"a" — 1) =0, 9, =9/3q".
This condition holds if the right-hand side of the Eq. (9) takes the form
== oa s P
Where{l}v} are Cristoffel symbols of a metrig, while F* obey the relation
0, F*q” = 0. In particular, if the dynamic equation (9) is a geodesic equation
4 = Kg"
with respect to a (nonlinear) connection
K =dg" ® (8, + K/'d,)
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on the tangent bundl€ Q — Q, this connections split into the sum
Ki={}a+F (10)
of the Levi—Civita connection of g and a soldering form
F=¢"F.,dg"®d, Fu =—F,.

As was mentioned above, the momentum phase space of R isnthe
cotangent bundld *Q provided with the symplectic forn® (1). Let H be a
smooth real function ofi * Q such that the morphism

H:T"Q—-TQ, ¢"=3d"H, (11)

is a bundle isomorphism. Then the inverse imape ﬁ‘l(Wg) of the subbundle

of hyperboloids\j (8) is a one-codimensional (consequently, coisotropic) closed
imbedded subbundle a*Q given by the constraintiy = 0 (2). We say thaH

is a relativistic Hamiltonian if the Poisson bracKét, Hr} vanishes orlN. This
means that the Hamiltonian vector field

y =3"Ha, — 9, Hd* (12)
of H preserves the constraiNtand, restricted tt\, it obeys the Hamilton equation
y]Qn+ijdH =0 (13)

of a Dirac constraint system dw with a HamiltonianH .
The morphism (11) sends the vector figld12) onto the vector field

yr = g0, + (0*Hd* 8, H — 8, H8* 9" H)0,
on TQ. This vector field defines the second-order dynamic equation
§* = 9*Ha*a,H — 9, Hd"* " H (14)
on Q, which preserves the subbundle of hyperboloids (8).

Example 1. The following is a basic example of relativistic Hamiltonian systems.
Put

1 v
H= ﬁgﬂ (pu - bu)(pv - bv)a

wheremis a constant and, dg* is a covector field on Q. Theit = 2m1H -1
and, hence{H, Ht} = 0. The constrainHt = 0 defines a closed imbedded one-
codimensional subbundle of T*Q. The Hamilton equation (13) takes the form
y QN = 0. Its solution (12) reads

NO 1 av _
q —Eg (pv bv)v
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. 1 1
P = —5-0.8" (P = B)(Py = B) + =g" (P ~ b, )ub.

The corresponding second-order dynamic equation (14) &
y T
q)\ = ['u)»v } qﬂq - Egk Fuvqﬂa (15)

1
{MXV } = _égkﬂ(aﬂgﬂv + 0,98 — 8ﬂguv)’ Fuw = aubv - avbu'

Itis a geodesic equation with respect to the affine connection

~V l v
Kﬁ:iu)‘*v}q _ag)\ F/LV

of type (10). For instance, let be a metric gravitational field and lbt, = e A,,
where A, is an electromagnetic potential whose gauge holds fixed. Then the
Eqg. (15) is the well-known equation of motion of a relativistic massive charge in
the presence of these fields.

Turn now to quantization of RM. We follow the standard geometric quantiza-
tion of the cotangent bundle (Blattner, 19&3iatycki, 1980; Woodhouse, 1992).
Because the canonical symplectic fofin(1) on T*Q is exact, the prequantum
bundle is defined as a trivial complex line bun@leverT * Q. Note that this bundle
need no metaplectic correction sintéX is endowed with canonical coordinates
for the symplectic fornf2. Thus,C is a quantum bundle. Let its trivialization

C=T*QxC (16)

hold fixed, and letq*, p;, c), ¢ € C, be the associated bundle coordinates. Then
one can treat sections @f (16) as smooth complex functions @ri Q. Note that
another trivialization ofC leads to an equivalent quantizationofQ.

The Kostant—Souriau prequantization formula associates to each smooth real
function f € C*°(T*Q) onT*Q the first-order differential operator

f=—ivy +f (17)

on sections ofZ, whereys = 8* 9, — 9, f 9> is the Hamiltonian vector field of
f and V is the covariant differential with respect to a suitablél)-principal
connectionA onC. This connection preserves the Hermitian megfic; ¢') = c€
on C, and its curvature form obeys the prequantization condiRog i Q2. For
the sake of simplicity, let us assume th@tand, consequentlyf *Q is simply
connected. Then the connectidrup to gauge transformations is

A=dp ® 3" +dq* ® (3, + icp, dc), (18)
and the prequantization operators (17) read
f=—iv; +(f — po*f). (19)
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Letus choose the vertical polarization®hQ. Itis the vertical tangent bundle
V T*Q of the fibrationz: T*Q — Q. Aswas mentioned above, the corresponding
guantum algebrad c C*(T*Q) consists of affine function$ (4) of momenta
p... Its representation by operators (19) is defined in the spagksectionso of
the quantum bundI€ of compact support, which obey the conditi®po = 0 for
any vertical Hamiltonian vector field on T*Q. This condition takes the form

8, fd*p =0, Vi eC®Q).

It follows that elements oE are independent of momenta and, consequently,
fail to be compactly supported, unless= 0. This is the well-known problem of
Schiodinger quantization that is solved as follows (Blattner, 1983; Giacht#ia
2002a,b).

Letig : Q — T*Q be the canonical zero section of the cotangent bundle
T*Q. LetCq =i5C be the pullback of the bundI€ (16) overQ. It is a trivial
complex line bundle€Cq = Q x C provided with the pullback Hermitian metric
g(c, ¢’) = ct’ and the pullback

Aq =i5A =dg" ® (9, + icp,dc)

of the connectiorA (18) onC. Sections ofCq are smooth complex functions on
Q, but this bundle need metaplectic correction.

Let the cohomology groupd?(Q; Z,) of Q be trivial. Then a metalinear
bundleD of complex half-forms orQ is defined. It admits the canonical lift of any
vector fieldz on Q such that the corresponding Lie derivative of its section reads

1
L, = %8, + =9, 7"
2
Let us consider the tensor prodit= Cq ® D over Q. Since the Hamiltonian
vector fields
B¢ = a9, — (p.dra* + d,b)d*
of functions f (4) are projected ont®, one can assign to each elemdnof the
guantum algebral the first-order differential operator
3 VA HAwS I A
f = (—lvmyf + f)(@l(.‘j-|—|d®|_7n§f = —la a;‘—éa)\a +b

on sectionsg of Y. For the sake of simplicity, let us choose a trivial metalinear
bundleD — Q associated to the orientation @. Its sections can be written in

the formpQ = (—g)Y*y,, wherey are smooth complex functions @ Then the
quantum algebral can be represented by the operatbi®) in the spac€>(Q)

of these functions. Itis easily justified that these operators obey the Dirac condition

[f, f1=—i(f .
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Remark 1. One usually considers the subspdeg C C*(Q) of functions of
compact support. It is a pre-Hilbert space with respect to the nondegenerate
Hermitian form

ww3=AwWewmd“w

It is readily observed thaf (5) are symmetric operators = { " in Eq, i.e.,
(fyly’) = (¥l f¥'). In RM, the spacdq however gets no physical meaning.

As was mentioned above, the functibia (2) need not belong to the quantum
algebraA, but a polynomial functiorHr can be quantized as an element of the
enveloping algebral by operatorddt (7). Then the quantum constraint (3) serves
as a relativistic quantum equation.

Example 2. Let us consider a massive relativistic charge in Example 1 whose
relativistic Hamiltonian is

H= —9’”(pu —eA)(p, —eA).
It defines the constraint
Hr = —g"(p, — eA)(P, — eA) ~1=0 (20
Let us represent the functidty (20) as the symmetric product

\-1/4
Hr = C9 (e (—g) M4 g (—g e

m
_ \—1/4
«(p—ea). CL g

of affine functions of momenta. It is quantized by the rule (7), where
(—=9) Y409y 0 (—g) V4 = —id,.
Then the well-known relativistic quantum equation

(—9) [0, — ieA) g (—9) 20, —ieA) + m’]y =0
is reproduced up to the factor ()~ 1/2.
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