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Geometric Quantization of Relativistic
Hamiltonian Mechanics
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A relativistic Hamiltonian mechanical system is seen as a conservative Dirac constraint
system on the cotangent bundle of a pseudo-Riemannian manifold. We provide geo-
metric quantization of this cotangent bundle where the quantum constraint serves as a
relativistic quantum equation.
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Both relativistic and nonrelativistic mechanical systems on a configuration
spaceQ can be seen as conservative Dirac constraint systems on the cotangent bun-
dle T∗Q of Q, but occupy its different subbundles. Therefore, one can follow the
precedent of geometric quantization of nonrelativistic time-dependent mechanics
in order to quantize relativistic mechanics.

Recall that, given a symplectic manifold (Z,Ä) and a HamiltonianH on
Z, a Dirac constraint system on a closed imbedded submanifoldi N : N → Z of
Z is defined as a Hamiltonian system onN provided with the pullback presym-
plectic formÄN = i ∗NÄ and the pullback Hamiltoniani ∗N H (Gotayet al., 1978;
Mangiarotti and Sardanashvily, 1998; Mu˜noz-Lecanda, 1989). Its solution is a
vector fieldγ on N, which fulfils the equation

γ cÄN + i ∗N dH = 0.

Let N be coisotropic. Then a solution exists if the Poisson bracket{H, f } vanishes
on N wheneverf is a function vanishing onN. It is the Hamiltonian vector field
of H on Z restricted toN.

A configuration space of nonrelativistic time-dependent mechanics (hence-
forth NRM) of m degrees of freedom is an (m+ 1)-dimensional smooth fibre
bundle Q→ R over the time axisR (Mangiarotti and Sardanashvily, 1998;
Sardanashvily, 1998). It is coordinated by (qλ) = (q0, qi ), whereq0 is the standard
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Cartesian coordinate onR. Let T∗Q be the cotangent bundle ofQ equipped with
the induced coordinates (qλ, pλ = q̇λ) with respect to the holonomic coframes
{dqλ}. Provided with the canonical symplectic form

Ä = dpλ 3 dqλ, (1)

the cotangent bundleT∗Q plays the role of a homogeneous momentum phase
space of NRM. Its momentum phase space is the vertical cotangent bundleV∗Q
of Q→ R coordinated by (qλ, qi ). A HamiltonianH of NRM is defined as a
sectionp0 = −H of the fibre bundleT∗Q→ V∗Q. Then the momentum phase
space of NRM can be identified with the imageN of H in T∗Q, which is the
one-codimensional (consequently, coisotropic) imbedded submanifold given by
the constraint

HT = po +H(qλ, pk) = 0.

Furthermore, a solution of a nonrelativistic Hamiltonian system with a Hamiltonian
H is the restrictionγ to N ∼= V∗Q of the Hamiltonian vector field ofHT on
T∗Q. It obeys the equationγ cÄN = 0 (Mangiarotti and Sardanashvily, 1998;
Sardanashivily, 1998). Moreover, one can show that geometric quantization of
V∗Q is equivalent to geometric quantization of the cotangent bundleT∗Q, where
the quantum constraint̂HTψ = 0 on sectionsψ of the quantum bundle serves as
the Schr¨odinger equation (Giachettaet al., 2002a,b). This quantization is a variant
of quantization of presymplectic manifolds via coisotropic imbeddings (Gotay and
Śniatycki, 1981).

A configuration space of relativistic mechanics (henceforth RM) is an oriented
pseudo-Riemannian manifold (Q, g), coordinated by (qλ). Its momentum phase
space is the cotangent bundleT∗Q provided with the symplectic formÄ (1). Note
that one also considers another symplectic formÄ+ F , whereF is the strength of
an electromagnetic field (Śniatycki, 1980). A relativistic Hamiltonian is defined as
a smooth real function H onT∗Q (Mangiarotti and Sardanashvily, 1998; Rovelli,
1991; Sardanashvily, 1998). Then a relativistic Hamiltonian system is described
as a Dirac constraint system on the subspaceN of T∗Q given by the equation

HT = gµν∂
µH∂νH − 1= 0. (2)

Similarly to geometric quantization of NRM, we provide geometric quantization
of the cotangent bundleT∗Q and characterize a quantum relativistic Hamiltonian
system by the quantum constraint

ĤTψ = 0. (3)

We choose the vertical polarization onT∗Q spanned by the tangent vectors∂λ.
The corresponding quantum algebraA ⊂ C∞(T∗Q) consists of affine functions
of momenta

f = aλ(qµ)pλ + b(qµ) (4)
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on T∗Q. They are represented by the Schr¨odinger operators

f̂ = −iaλ∂λ − i

2
∂λa

λ − i

4
aλ∂λ ln(−g)+ b, g = det(gαβ), (5)

in the spaceC∞(Q) of smooth complex functions onQ.
Note that the functionHT (2) need not belong to the quantum algebraA.

Nevertheless, one can show that, ifHT is a polynomial of momenta of degreek, it
can be represented as a finite composition

HT =
∑

i

f1i . . . fki (6)

of products of affine functions (4), i.e., as an element of the enveloping algebraĀ
of the Lie algebraA (Giachettaet al., 2002a). Then it is quantized

HT 7→ ĤT =
∑

i

f̂ 1i . . . f̂ ki (7)

as an element of̄A. However, the representation (6) and, consequently, the quan-
tization (7) fail to be unique.

Let us provide the above mentioned formulation of classical RM as a
constraint autonomous mechanics on a pseudo-Riemannian manifold (Q, g)
(Giachettaet al., 1999; Mangiarotti and Sardanashvily, 1998, 2000). Note that
it need not be a space-time manifold.

The space of relativistic velocities of RM onQ is the tangent bundleTQ of
Q equipped with the induced coordinates (qλ, q̇λ) with respect to the holonomic
frames{∂λ}. Relativistic motion is located in the subbundleWg of hyperboloids

gµν(q)q̇µq̇ν − 1= 0 (8)

of TQ. It is described by a second-order dynamic equation

q̈λ = 4λ(qµ, q̇µ) (9)

on Q, which preserves the subbundle (8), i.e.,

(q̇λ∂λ +4λ∂̇λ)(gµν q̇µq̇ν − 1)= 0, ∂̇λ = ∂/∂q̇λ.

This condition holds if the right-hand side of the Eq. (9) takes the form

4λ =
{
λ
µ ν

}
q̇µq̇ν + Fλ,

where{ λµ ν } are Cristoffel symbols of a metricg, while Fλ obey the relation

gµνFµq̇ν = 0. In particular, if the dynamic equation (9) is a geodesic equation

q̈λ = K λ
µq̇µ

with respect to a (nonlinear) connection

K = dqλ ⊗ (∂λ + Kµ
λ ∂̇µ

)
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on the tangent bundleT Q→ Q, this connections split into the sum

K λ
µ =

{
λ
µ ν

}
q̇ν + Fλ

µ (10)

of the Levi–Civita connection of g and a soldering form

F = gλνFµν dqµ ⊗ ∂̇λ, Fµν = −Fνµ.

As was mentioned above, the momentum phase space of RM onQ is the
cotangent bundleT∗Q provided with the symplectic formÄ (1). Let H be a
smooth real function onT∗Q such that the morphism

H̃ : T∗Q→ T Q, q̇µ = ∂µH, (11)

is a bundle isomorphism. Then the inverse imageN = H̃−1(Wg) of the subbundle
of hyperboloidsWg (8) is a one-codimensional (consequently, coisotropic) closed
imbedded subbundle ofT∗Q given by the constraintHT = 0 (2). We say thatH
is a relativistic Hamiltonian if the Poisson bracket{H, HT } vanishes onN. This
means that the Hamiltonian vector field

γ = ∂λH∂λ − ∂λH∂λ (12)

of H preserves the constraintN and, restricted toN, it obeys the Hamilton equation

γ cÄN + i ∗N dH = 0 (13)

of a Dirac constraint system onN with a HamiltonianH .
The morphism (11) sends the vector fieldγ (12) onto the vector field

γT = q̇λ∂λ + (∂µH∂λ∂µH − ∂µH∂λ∂µH )∂̇λ

onTQ. This vector field defines the second-order dynamic equation

q̈λ = ∂µH∂λ∂µH − ∂µH∂λ∂µH (14)

on Q, which preserves the subbundle of hyperboloids (8).

Example 1. The following is a basic example of relativistic Hamiltonian systems.
Put

H = 1

2m
gµν(pµ − bµ)(pν − bν),

wherem is a constant andbµ dqµ is a covector field on Q. ThenHT = 2m−1H − 1
and, hence,{H, HT } = 0. The constraintHT = 0 defines a closed imbedded one-
codimensional subbundleN of T∗Q. The Hamilton equation (13) takes the form
γ cÄN = 0. Its solution (12) reads

q̇α = 1

m
gαν(pν − bν),
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ṗα = − 1

2m
∂αgµν(pµ − bµ)(pν − bν)+ 1

m
gµν(pµ − bµ)∂αbν .

The corresponding second-order dynamic equation (14) onQ is

q̈λ =
{
λ
µ ν

}
q̇µq̇ν − 1

m
gλνFµν q̇

µ, (15){
λ
µ ν

}
= −1

2
gλβ(∂µgβν + ∂νgβµ − ∂βgµν), Fµν = ∂µbν − ∂νbµ.

It is a geodesic equation with respect to the affine connection

K λ
µ =

{
λ
µ ν

}
q̇ν − 1

m
gλνFµν

of type (10). For instance, letg be a metric gravitational field and letbµ = eAµ,
where Aµ is an electromagnetic potential whose gauge holds fixed. Then the
Eq. (15) is the well-known equation of motion of a relativistic massive charge in
the presence of these fields.

Turn now to quantization of RM. We follow the standard geometric quantiza-
tion of the cotangent bundle (Blattner, 1983;Śniatycki, 1980; Woodhouse, 1992).
Because the canonical symplectic formÄ (1) on T∗Q is exact, the prequantum
bundle is defined as a trivial complex line bundleC overT∗Q. Note that this bundle
need no metaplectic correction sinceT∗X is endowed with canonical coordinates
for the symplectic formÄ. Thus,C is a quantum bundle. Let its trivialization

C ∼= T∗Q× C (16)

hold fixed, and let (qλ, pλ, c), c ∈ C, be the associated bundle coordinates. Then
one can treat sections ofC (16) as smooth complex functions onT∗Q. Note that
another trivialization ofC leads to an equivalent quantization ofT∗Q.

The Kostant–Souriau prequantization formula associates to each smooth real
function f ∈ C∞(T∗Q) on T∗Q the first-order differential operator

f̂ = −i∇ϑ f + f (17)

on sections ofC, whereϑ f = ∂λ f ∂λ − ∂λ f ∂λ is the Hamiltonian vector field of
f and∇ is the covariant differential with respect to a suitableU (1)-principal
connectionA onC. This connection preserves the Hermitian metricg(c, c′) = cc′

on C, and its curvature form obeys the prequantization conditionR= iÄ. For
the sake of simplicity, let us assume thatQ and, consequently,T∗Q is simply
connected. Then the connectionA up to gauge transformations is

A = dpλ ⊗ ∂λ + dqλ ⊗ (∂λ + icpλ∂c), (18)

and the prequantization operators (17) read

f̂ = −iϑ f + ( f − pλ∂
λ f ). (19)
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Let us choose the vertical polarization onT∗Q. It is the vertical tangent bundle
V T∗Q of the fibrationπ : T∗Q→ Q. As was mentioned above, the corresponding
quantum algebraA ⊂ C∞(T∗Q) consists of affine functionsf (4) of momenta
pλ. Its representation by operators (19) is defined in the spaceE of sectionsρ of
the quantum bundleC of compact support, which obey the condition∇ϑρ = 0 for
any vertical Hamiltonian vector fieldϑ on T∗Q. This condition takes the form

∂λ f ∂λρ = 0, ∀ f ∈ C∞(Q).

It follows that elements ofE are independent of momenta and, consequently,
fail to be compactly supported, unlessρ = 0. This is the well-known problem of
Schrödinger quantization that is solved as follows (Blattner, 1983; Giachettaet al.,
2002a,b).

Let i Q : Q→ T∗Q be the canonical zero section of the cotangent bundle
T∗Q. Let CQ = i ∗QC be the pullback of the bundleC (16) overQ. It is a trivial
complex line bundleCQ = Q× C provided with the pullback Hermitian metric
g(c, c′) = cc′ and the pullback

AQ = i ∗Q A = dqλ ⊗ (∂λ + icpλ∂c)

of the connectionA (18) onC. Sections ofCQ are smooth complex functions on
Q, but this bundle need metaplectic correction.

Let the cohomology groupH2(Q;Z2) of Q be trivial. Then a metalinear
bundleD of complex half-forms onQ is defined. It admits the canonical lift of any
vector fieldτ on Q such that the corresponding Lie derivative of its section reads

Lτ = τλ∂λ + 1

2
∂λτ

λ.

Let us consider the tensor productY = CQ ⊗D over Q. Since the Hamiltonian
vector fields

ϑ f = aλ∂λ − (pµ∂λa
µ + ∂λb)∂λ

of functions f (4) are projected ontoQ, one can assign to each elementf of the
quantum algebraA the first-order differential operator

f̂ = (− i∇πϑ f + f
)⊗ Id+ Id⊗ Lπϑ f = −iaλ∂λ − i

2
∂λa

λ + b

on sectionsρQ of Y. For the sake of simplicity, let us choose a trivial metalinear
bundleD→ Q associated to the orientation ofQ. Its sections can be written in
the formρQ = (−g)1/4ψ , whereψ are smooth complex functions onQ. Then the
quantum algebraA can be represented by the operatorsf̂ (5) in the spaceC∞(Q)
of these functions. It is easily justified that these operators obey the Dirac condition

[ f̂ , f̂ ′] = −i { f̂, f ′}.
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Remark 1. One usually considers the subspaceEQ ⊂ C∞(Q) of functions of
compact support. It is a pre-Hilbert space with respect to the nondegenerate
Hermitian form

〈ψ |ψ ′〉 =
∫

Q
ψψ ′(−g)1/2 dm+1q.

It is readily observed that̂f (5) are symmetric operatorŝf = f̂
∗

in EQ, i.e.,
〈 f̂ψ |ψ ′〉 = 〈ψ | f̂ψ ′〉. In RM, the spaceEQ however gets no physical meaning.

As was mentioned above, the functionHT (2) need not belong to the quantum
algebraA, but a polynomial functionHT can be quantized as an element of the
enveloping algebraA by operatorŝH T (7). Then the quantum constraint (3) serves
as a relativistic quantum equation.

Example 2. Let us consider a massive relativistic charge in Example 1 whose
relativistic Hamiltonian is

H = 1

2m
gµν(pµ − eAµ)(pν − eAν).

It defines the constraint

HT = 1

m2
gµν(pµ − eAµ)(pν − eAν)− 1= 0. (20)

Let us represent the functionHT (20) as the symmetric product

HT = (−g)−1/4

m
· (pµ − eAµ) · (−g)−1/4 · gµν · (−g)−1/4 ·

× (pν − eAν) · (−g)−1/4

m
− 1

of affine functions of momenta. It is quantized by the rule (7), where

(−g)−1/4 ◦ ∂̂α ◦ (−g)−1/4 = −i ∂α.

Then the well-known relativistic quantum equation

(−g)−1/2
[
(∂µ − ieAµ)gµν(−g)1/2(∂ν − ieAν)+m2

]
ψ = 0

is reproduced up to the factor (−g)−1/2.
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